Japan (日本語)
Japan (日本語)
Case Study

Foothill College students 3D print exoskeleton arms for preschooler.


3D CAD drawing of the exoskeleton arm designed by biomedical device engineering students at Foothill College.

Rare condition forces students to get creative and find solution.

Addressing issues today for a brighter tomorrow. 

Noel is a bright and energetic 4-year-old boy who was born with arthrogryposis, a condition where thickening and scarring of the muscle tissue left him unable to bend his arms, making it difficult to eat or dress without help. Noel adapted by arching his back to lift his arms, but his occupational therapists were concerned this would cause future back problems.

This project made me realize I really like applying science to help people. Now I’m finally realizing what I want and I’ve never felt so certain.

3D printed independence.

But now, thanks to help from a custom 3D printed exoskeleton, Noel uses his arms under his own power without putting his back at risk. Developed through a partnership between Noel’s occupational therapists and Foothill College in California, the exoskeleton is helping Noel gain more freedom of movement. Students in the community college’s biomedical device engineering program designed the exoskeleton under the direction of instructor Dr. Oxana Pantchenko and occupational therapists at California Children Services. The device uses rubber bands to resist gravity and assist Noel’s own muscles in lifting and bending his arms, and helps the boy get stronger the more he uses it.

“One challenge in developing the exoskeleton arms is that it they must be designed from scratch to perfectly fit Noel,” Pantchenko said. “Furthermore, a complex mechanism is needed in order to match the range of motion of the elbow and the exoskeleton arms need to be very light so he can wear them easily.”  
Noel has more freedom of movement and independence
thanks to his exoskeleton arms.
Students can easily scale and reprint the device to
accommodate Noel’s growth.

Powerful design.

Foothill College students addressed these challenges by using the school’s PolyJet™ technology-driven 3D printer to quickly print a device as one assembled part that is lighter than conventional metal devices, avoiding the need for costly casting or machining. “The prototype of both arms prints in 24 hours and costs only about $100 per arm,” Pantchenko said.

3D printing empowers students to easily scale components to fit, and to affordably reprint them to accommodate Noel’s growth and development. Support material is removed simply with water. The flexibility of 3D printing also gave students an opportunity to personalize the device, making it more fun for Noel to wear by adding spider designs inspired by his favorite superhero.

“With the 3D printed exoskeleton, Noel can now eat, play with toys, and even put a hat on his head without any assistance,” Pantchenko said. Family and occupational therapists noticed a difference quickly in Noel with his new exoskeleton arms. Now his movements are more in alignment with less back bending, and Noel is happier and more independent. 

Hands-on learning.

“This project made me realize I really like applying science to help people,” said Kevin Godines, student at Foothill College. “Now I’m finally realizing what I want and I’ve never felt so certain.” Foothill College continues to inspire students with project-based learning opportunities that impact real-world applications in biomedical device engineering and 3D printing to help more children like Noel. “My goal is to come up with more projects to get students excited about biomedical engineering,” said Pantchenko. 
Despite having arthrogryposis, Noel can bend his arms and play more using his custom 3D printed exoskeleton arms.

Download case study

Related Content

Header image

CoVent-19 Challenge team develops potentially life-saving ventilator prototype in record time.

See how the CoVent-19 Challenge team developed a potentially life-saving ventilator prototype in record time ignited by the urgency of the moment.

続けて見る
3d printing medical industry

Medical designers: how to incorporate 3D printed materials.

The medical industry uses 3D printers for designing, prototypes, and training for surgeries. Learn about these and other applications in our whitepaper.

続けて見る
preoperative surgical planning

How to: implement preoperative surgical planning using 3D printing.

This whitepaper shows how interventionists in the neurovascular and cardiac specialties are working with engineers to use 3D printing to plan for endovascular cases.

続けて見る
Header image

See how the CoVent-19 Challenge team developed a potentially life-saving ventilator prototype in record time ignited by the urgency of the moment.

3d printing medical industry

The medical industry uses 3D printers for designing, prototypes, and training for surgeries. Learn about these and other applications in our whitepaper.

preoperative surgical planning

This whitepaper shows how interventionists in the neurovascular and cardiac specialties are working with engineers to use 3D printing to plan for endovascular cases.